Risk and parameter convergence of logistic regression
نویسندگان
چکیده
The logistic loss is strictly convex and does not attain its infimum; consequently the solutions of logistic regression are in general off at infinity. This work provides a convergence analysis of gradient descent applied to logistic regression under no assumptions on the problem instance. Firstly, the risk is shown to converge at a rate O(ln(t)/t). Secondly, the parameter convergence is characterized along a unique pair of complementary subspaces defined by the problem instance: one subspace along which strong convexity induces parameters to converge at rate O(ln(t)/ √ t), and its orthogonal complement along which separability induces parameters to converge in direction at rate O(ln ln(t)/ ln(t)). 1 Overview Logistic regression is the task of finding a vector w ∈ R which approximately minimizes the (empirical) logistic risk, namely
منابع مشابه
A NEW APPROACH FOR PARAMETER ESTIMATION IN FUZZY LOGISTIC REGRESSION
Logistic regression analysis is used to model categorical dependent variable. It is usually used in social sciences and clinical research. Human thoughts and disease diagnosis in clinical research contain vagueness. This situation leads researchers to combine fuzzy set and statistical theories. Fuzzy logistic regression analysis is one of the outcomes of this combination and it is used in situa...
متن کاملComparison of ordinary logistic regression and robust logistic regression models in modeling of pre-diabetes risk factors
Background: Regarding the increased risk of developing type 2 diabetes in pre-diabetic people, identifying pre-diabetes and determining of its risk factors seems so necessary. In this study, it is aimed to compare ordinary logistic regression and robust logistic regression models in modeling pre-diabetes risk factors. Methods: This is a cross-sectional study and conducted on 6460 people, over ...
متن کاملSample size determination for logistic regression
The problem of sample size estimation is important in medical applications, especially in cases of expensive measurements of immune biomarkers. This paper describes the problem of logistic regression analysis with the sample size determination algorithms, namely the methods of univariate statistics, logistics regression, cross-validation and Bayesian inference. The authors, treating the regr...
متن کاملThe Comparison of Credit Risk between Artificial Neural Network and Logistic Regression Models in Tose-Taavon Bank in Guilan
One of the most important issues always facing banks and financial institutes is the issue of credit risk or the possibility of failure in the fulfillment of obligations by applicants who are receiving credit facilities. The considerable number of banks’ delayed loan payments all around the world shows the importance of this issue and the necessary consideration of this topic. Accordingly...
متن کاملCredit Risk Measurement of Trusted Customers Using Logistic Regression and Neural Networks
The issue of credit risk and deferred bank claims is one of the sensitive issues of banking industry, which can be considered as the main cause of bank failures. In recent years, the economic slowdown accompanied by inflation in Iran has led to an increase in deferred bank claims that could put the country's banking system in serious trouble. Accordingly, the current paper presents a prediction...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2018